Assessment of concentration of radon 222 and effective dose; Bandar Abbas city (Iran) citizens exposed through drinking...

*Article in* International Journal of Pharmacy and Technology · March 2016

8 authors, including:

**Oliveri Conti Gea**
University of Catania

114 PUBLICATIONS 315 CITATIONS

**Margherita Ferrante**
University of Catania

219 PUBLICATIONS 906 CITATIONS

**Maryam Mirzaei**
Jahrom University of Medical Sciences

22 PUBLICATIONS 7 CITATIONS

Some of the authors of this publication are also working on these related projects:

- **Air Pollution and TVE** View project
- **Source Characterization of Volatile Organic Compounds in Mashhad, Iran** View project
ASSESSMENT OF CONCENTRATION OF RADON 222 AND EFFECTIVE DOSE; BANDAR ABBAS CITY (IRAN) CITIZENS EXPOSED THROUGH DRINKING TAP WATER

Yadolah Fakhri1, Gea Oliveri Conti2, Margherita Ferrante2, Abotaleb Bay3, Moayed Avazpour4, Bigard Moradi5, Yahya Zandsalimi6, Leila Rasouli Amirhajeloo7, Ghazaleh Langarizadeh8, Hassan Keramati9,10*

1Social Determinants in Health Promotion Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
2Environmental and Food Hygiene Laboratories (LIAA), “G.F. Inggrassia” Department, Hygiene and Public Health, University of Catania, Catania, Italy.
3Environmental Health Research Center, School of Public Health, Golstan University of Medical Sciences, Golstan, Iran.
4Department of Environmental Health Engineering, School of Public Health, Ilam University of Medical Sciences, Ilam, Iran.
5Department of Health Public, Kermanshah University of Medical Sciences, Kermanshah, Iran.
6Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.
7Department of Environmental Health Engineering, School of Public Health, Qom University of Medical Sciences, Qom, Iran.
8Food and Drugs Research Center, Bam University of Medical Sciences, Bam, Iran.
9Students research office, Department of Environmental Health Engineering, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
10Department of environmental health engineering, school of public health, Semnan University of Medical Sciences, Semnan, Iran.

*Correspondence; Hassan Keramati, Email: Hkramatee@gmail.com, Phone:+989128497093

Received on 10-02-2016
Accepted on 15-03-2016

Abstract

Radon 222 is a natural radioactive element with 3.825 days half-life. 222Rn is colorless and odorless with high solubility in water. The presence of 222Rn in drinking water can lead to lung or stomach cancers through chronic exposure per inhalation or ingestion. Different age groups have different sensitivity to the health effects of 222-Radon.

In this cross-sectional study, the concentration of 222Rn in the 8 regions of Bandar Abbas city in 48 samples of tap water was measured by portable Radon meter RTM1688-2 model on June 2015. The effective dose by tap water was also calculated in different age groups through UNSCEAR equation. The range and mean concentration of 222Rn is 0.87-0.384 Bq/l and 0.232±0.7 Bq/l, respectively. The mean of the effective dose of exposure for the age groups was 0.0024±0.0007, 0.0018±0.0005, 0.0007±0.0002 and 0.001±0.0003 mSv/y, respectively for adult males, adult females, children and infants. The magnitude’s order of measured doses of studied age groups was: adult males>adult females>infants>children. The effective doses, ingested by all groups, are less than the standard limits particularly for...
The results of this research shows that $^{222}\text{Rn}$ concentration in the tap water of Bandar Abbas city is lower than WHO, EU and EPA standard limits (p value<0.001). Also the effective $^{222}\text{Rn}$ doses in the all age groups are much lower than standard limits. Given the daily high consumption of water, adult males between the Bandar Abbas citizens showed the highest sensitivity to the $^{222}\text{Rn}$ health hazard.

**Keywords:** $^{222}\text{Rn}$, tap drinking water, effective dose, age groups, Bandar Abbas City, Iran

1. Introduction

Radon $^{222}\text{Rn}$ is a natural radioactive element with 3.825 days half-life and is colorless and odorless. The chronic exposure to $^{222}\text{Rn}$ can lead to lung, blood and stomach cancers through alpha emission during the decay[3-1]. $\text{Rn}$ has a high solubility in water (Refractive index of moles; $1.25 \times 10^{-5}$ at 37°C), $^{222}\text{Rn}$ has 90 times more solubility than Neon and Helium [4]. $^{222}\text{Rn}$ is one of the main and final decay products of $^{238}\text{Uranium}$ and can be released from different sources such as surface and ground waters, soil, igneous and sedimentary rocks (granites) [6,5]. Humans are constantly exposed to $^{222}\text{Rn}$ both outdoor and indoor air inhalation or drinking water’s ingestion [8,7]. Alpha radiation’s emission is the first health risk respect to other radiation types for its high ionization power [9]. When a human consumes water containing $^{222}\text{Rn}$, the emitted alpha radiation during its decay can cause damage to the DNA of stomach cells. $^{222}\text{Rn}$ can be distributed to, also, other districts or organs through the blood perfusion of stomach wall [12-10]. For prolonged exposures, as is the case for ingestion of drinking water containing radio nuclides over extended periods of time, evidence of an increased cancer risk in humans is available at doses above 100 mSv [10,13]. It is estimated that 89% and 11% of the cancer risk is related to the inhalation or ingestion of water containing $^{222}\text{Rn}$, respectively [11].

Due to the more prolonged contact of groundwater with igneous rocks (granites) and sediments, the dose of radioactive substances in this water are higher respect to the surface waters[16-14]. For this reason, the $^{222}\text{Rn}$ concentration in groundwater resources is 2 to 3 times greater than surface waters [17]. EPA Standard and WHO Guideline for concentration of $^{222}\text{Rn}$ in drinking water are 100 Bq/l and 11 Bq/l [10,18]. The WHO (2008) and the EU Council (Council Directive 98/83/EC, 1998) recommend the determination of the reference level of an effective dose from drinking water consumption at 0.1 mSv/year[19,20]. This value excludes the effective doses from $^{3}\text{H}$, $^{40}\text{K}$ and $^{226}\text{Rn}$[21]. Many studies have measured the concentration of $^{222}\text{Rn}$ both in drinking tap water and bottled water [24-22,4]. Per capita consumption of drinking water for residents of Bandar Abbas city is high due to warm and humid weather conditions. Therefore, aim of our study was to measure the concentration of $^{222}\text{Rn}$ and calculate the
effective dose in the infant, children, adult male and adult female of Bandar Abbas citizen consumers of tap water and to compare with the standard limits and other studies.

2. Materials and Methods

1.2 Studied Area: Bandar Abbas city is located at the south of Iran (27°11'53” N and 54° 22'7” E) and at the height of 9 meters above the sea level(Figure 1). The weather of this city is warm and humid and its population is increasing day to day thank to economic growth [25].

2.2 Sample collection

Our study is a cross-sectional type. 48 samples of 1.5 liter tap drinking water were gathered in June 2015 from 8 site of Bandar Abbas city (6 samples for each site and in two different places). Finally according to standard methods instructions, samples were maintained to 4-6ºC until arrival to the laboratory of Tehran University of Medical Sciences for measurement[26].

![Figure-1: Sites of water samples collection from the distribution network in Bandar Abbas city.](image)

3.2 Measurement of $^{222}\text{Rn}$ concentration

Temperature of all samples were alike and brought to 12ºC before measuring of $^{222}\text{Rn}$[28 ,27]. Measurement of $^{222}\text{Rn}$ concentrations was carried out using a Sarad radon meter, model RTM1688-2, Germany. The sensitivity of this device in 150 minutes of continuous measurements is 6.5 counts/min×KBm$^{-3}$[29]. High sensitivity associated with alpha spectroscopy analysis are resulted in short time to response even in low concentration. The 2-hour mean $^{222}\text{Rn}$ concentration for all samples was registered and analyzed [30].

4.2 $^{222}\text{Rn}$ concentration assessment

Since there was a time gap between sampling and measurement of $^{222}\text{Rn}$ concentration in sample, so it is needed to adjust the $^{222}\text{Rn}$ concentration at the sampling time due to continuous decay of it. The $^{222}\text{Rn}$ concentration in sampling time can be calculated through equation1;
Equation 1: \( C_t = C_0 e^{-\lambda t/60} \)

In this equation, \( C_t \) is \(^{222}\)Rn concentration in measurement time (Bq/m\(^3\)), \( C_0 \) is \(^{222}\)Rn concentration in sampling time, \( \lambda \) is the constant of \(^{222}\)Rn decay (0.007542 h\(^{-1}\)) and \( t \) is the time difference between sampling and measuring times (h) [31].

5.2. Determination of the annual effective dose

To determine the annual effective dose of exposure resulting from drinking water containing \(^{222}\)Rn, the equation of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) was used [32];

Equation 2: \( E = K \times G \times C \times T \times 1000 \)

In this equation, \( E \) is the annual effective dose of exposure by mSv/y, \( K \) is the conversion coefficient of \(^{222}\)Rn concentration to the effective dose (Sv/Bq), \( G \) is daily water intake (l/d), \( C \) is \(^{222}\)Rn concentration measured (Bq/l), \( T \) is duration of tap water consumption (365 days) and 1000 is the conversion coefficient of Sv vs mSv. \( K \) sensitivity coefficient for adult males and females (17-65 years old), children (4-14 years old) and infants (<2 years) is \( 18 \times 10^{-9} \) Sv/Bq, \( 26 \times 10^{-9} \) Sv/Bq and \( 35 \times 10^{-9} \) Sv/Bq, respectively [33, 34]. Many studies have shown that the amount of consumed drinking water by humans is less than 2 liters per day but this consumption varies with the different age groups. The daily water intake by humans is dependent on weather conditions, physical activity, culture, economy and etc. Since there were no data or information available about the exact amount of drinking water daily consumption in different age groups in Bandar Abbas city, we have chosen to use the EPA Estimated Per Capita Water Ingestion in hot and humid weather regions (percentile 95%). The daily water intake in age groups of adults males, adults females, children and infants is 2.723, 2.129, 0.431 and 0.327 l/p-d, respectively [35].

6.2. Statistical Analysis

Used to one sample t test for compare \(^{222}\)Rn concentration of tap water with standard limits. Since the prerequisite for t test analysis is normal distribution, we have done kolmogorov-smirnov analysis in the SPSS 16.0.lnk.Also, \( p \) value<0.05 was selected as the significant level (\( \alpha=5\% \)).

3. Results

Kolmogorov-Smirnov analysis has showed that data is Normal distributed (\( p \) value = 0.8). Hence we used to statistical Analysis one sample t test for compare concentration of \(^{222}\)Rn with WHO guideline(100 Bq/l) and EPA standard limit (11 Bq/l). Statistical analysis showed that \(^{222}\)Rn concentration in tap water is lower than \(^{222}\)Rn WHO Guideline and EPA standard significantly (\( p \) value<0.001). Range concentration of \(^{222}\)Rn 0.225-0.25 Bq/l (n=12) and
0.35-0.375 Bq/l (n=0) are samples with higher and lower frequency respectively (figure 2). The mean of $^{222}$Rn in 48 tap water samples of Bandar Abbas city has been shown in Table 1. The range and mean concentration of $^{222}$Rn measured was 0.087-0.384 Bq/l and 0.232±0.7 Bq/l, respectively.

![Figure-2: Normal distribution concentration of $^{222}$Rn in the tap drinking water (n=48).](image)

Table-1: Mean of $^{222}$Rn concentration in 48 tap water samples at sampling and measurement times

<table>
<thead>
<tr>
<th>Number samples</th>
<th>Date Collection</th>
<th>Date Measurement</th>
<th>Concentration laboratory</th>
<th>Mean of the different time (h)</th>
<th>Mean sampling moment</th>
<th>Mean of region</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2015.6.3 7:30</td>
<td>2015.6.6</td>
<td>75.6</td>
<td>0.157</td>
<td>153</td>
<td>0.153</td>
</tr>
<tr>
<td>2</td>
<td>2015.6.3 7:30</td>
<td>2015.6.6</td>
<td>77.6</td>
<td>0.152</td>
<td>153</td>
<td>0.153</td>
</tr>
<tr>
<td>3</td>
<td>2015.6.3 7:30</td>
<td>2015.6.6</td>
<td>79.6</td>
<td>0.15</td>
<td>153</td>
<td>0.153</td>
</tr>
<tr>
<td>4</td>
<td>2015.6.3 8:20</td>
<td>2015.6.6</td>
<td>81.6</td>
<td>0.066</td>
<td>59</td>
<td>0.059</td>
</tr>
<tr>
<td>5</td>
<td>2015.6.3 8:20</td>
<td>2015.6.6</td>
<td>83.6</td>
<td>0.061</td>
<td>59</td>
<td>0.059</td>
</tr>
<tr>
<td>6</td>
<td>2015.6.3 8:20</td>
<td>2015.6.7</td>
<td>96.0</td>
<td>0.05</td>
<td>59</td>
<td>0.059</td>
</tr>
<tr>
<td>7</td>
<td>2015.6.3 8:40</td>
<td>2015.6.7</td>
<td>98.1</td>
<td>0.085</td>
<td>83</td>
<td>0.083</td>
</tr>
<tr>
<td>8</td>
<td>2015.6.3 8:40</td>
<td>2015.6.7</td>
<td>100.1</td>
<td>0.083</td>
<td>83</td>
<td>0.083</td>
</tr>
<tr>
<td>9</td>
<td>2015.6.3 8:40</td>
<td>2015.6.7</td>
<td>102.2</td>
<td>0.081</td>
<td>83</td>
<td>0.083</td>
</tr>
<tr>
<td>10</td>
<td>2015.6.3 9:15</td>
<td>2015.6.7</td>
<td>104.2</td>
<td>0.104</td>
<td>96</td>
<td>0.096</td>
</tr>
<tr>
<td>11</td>
<td>2015.6.3 9:15</td>
<td>2015.6.7</td>
<td>106.3</td>
<td>0.1</td>
<td>96</td>
<td>0.096</td>
</tr>
<tr>
<td>12</td>
<td>2015.6.3 9:15</td>
<td>2015.6.8</td>
<td>119.0</td>
<td>0.084</td>
<td>96</td>
<td>0.096</td>
</tr>
<tr>
<td>13</td>
<td>2015.6.3 9:40</td>
<td>2015.6.8</td>
<td>121.1</td>
<td>0.118</td>
<td>110</td>
<td>0.11</td>
</tr>
<tr>
<td>14</td>
<td>2015.6.3 9:40</td>
<td>2015.6.8</td>
<td>123.1</td>
<td>0.111</td>
<td>110</td>
<td>0.11</td>
</tr>
<tr>
<td>15</td>
<td>2015.6.3 9:40</td>
<td>2015.6.8</td>
<td>125.2</td>
<td>0.101</td>
<td>110</td>
<td>0.11</td>
</tr>
<tr>
<td>16</td>
<td>2015.6.3 10:20</td>
<td>2015.6.8</td>
<td>127.2</td>
<td>0.115</td>
<td>104</td>
<td>0.104</td>
</tr>
<tr>
<td>17</td>
<td>2015.6.3 10:20</td>
<td>2015.6.8</td>
<td>129.3</td>
<td>0.111</td>
<td>104</td>
<td>0.104</td>
</tr>
<tr>
<td>18</td>
<td>2015.6.3 10:20</td>
<td>2015.6.9</td>
<td>142.0</td>
<td>0.086</td>
<td>104</td>
<td>0.104</td>
</tr>
<tr>
<td>19</td>
<td>2015.6.3 11:01</td>
<td>2015.6.9</td>
<td>143.5</td>
<td>0.066</td>
<td>60</td>
<td>0.06</td>
</tr>
<tr>
<td>20</td>
<td>2015.6.3 11:01</td>
<td>2015.6.9</td>
<td>145.0</td>
<td>0.059</td>
<td>60</td>
<td>0.06</td>
</tr>
</tbody>
</table>
The mean of the 222Rn effective dose ingested in adult males, adult females, children and infants is 0.0024±0.0007, 0.0018±0.0005, and 0.0007±0.0002 and 0.001±0.0003 mSv/y, respectively (Table 2).

Table 2: Effective dose of 222Rn in different age groups induced by ingestion of contaminated tap water.
4. Discussion

High values of radon in well water is attributed to depth of well, as the $^{222}\text{Rn}$ concentration in groundwater is usually higher than surface water [36]. This higher $^{222}\text{Rn}$ concentration can be resulted from the mixing of groundwater (Wells of Minab plain and Shamil) with surface water (Esteghlal lake of Minab). Since almost $^{222}\text{Rn}$ concentration in surface water is less than groundwater, so, mixing of surface water with groundwater can decrease concentration in a lot of cases [37].

Table-3: Concentration of $^{222}\text{Rn}$ (Bq/l) in different sources of water with different parts of the world.

<table>
<thead>
<tr>
<th>Sources of water</th>
<th>Concentration</th>
<th>Country</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tap water</td>
<td>3.7</td>
<td>Iran /Tehran</td>
<td>[38]</td>
</tr>
<tr>
<td>Tap water</td>
<td>17.99</td>
<td>Iran /Neyshabour</td>
<td>[38]</td>
</tr>
<tr>
<td>Tap water</td>
<td>16.23</td>
<td>Iran /Mashhad</td>
<td>[38]</td>
</tr>
<tr>
<td>Tap water</td>
<td>0.78±0.06</td>
<td>Iran /Minab</td>
<td>[22]</td>
</tr>
<tr>
<td>Tap water</td>
<td>0.019</td>
<td>Iran /Jask</td>
<td>[39]</td>
</tr>
<tr>
<td>Tap water</td>
<td>3.4</td>
<td>Iran /Ramsar</td>
<td>[38]</td>
</tr>
<tr>
<td>Tap water</td>
<td>4.63</td>
<td>China /Beijing</td>
<td>[40]</td>
</tr>
<tr>
<td>Tap water</td>
<td>0.0355</td>
<td>Palestine/Gaza</td>
<td>[41]</td>
</tr>
<tr>
<td>well</td>
<td>12.7</td>
<td>Italy</td>
<td>[42]</td>
</tr>
<tr>
<td>well</td>
<td>0.02 -112.5 (15.4)</td>
<td>Brazil</td>
<td>[43]</td>
</tr>
<tr>
<td>Groundwater</td>
<td>0.71 -3735 (229.4)</td>
<td>China</td>
<td>[44]</td>
</tr>
<tr>
<td>Tap water</td>
<td>0-2</td>
<td>Venezuela</td>
<td>[45]</td>
</tr>
<tr>
<td>Tap water</td>
<td>10.2</td>
<td>Turkey/Konya</td>
<td>[46]</td>
</tr>
<tr>
<td>Tap water</td>
<td>8 -18 (12)</td>
<td>China</td>
<td>[47]</td>
</tr>
<tr>
<td>Tap water</td>
<td>0.4-6.4</td>
<td>Romania/ North- West</td>
<td>[48]</td>
</tr>
<tr>
<td>Tap water</td>
<td>0.91-12.58</td>
<td>Turkay</td>
<td>[49]</td>
</tr>
<tr>
<td>Tap water</td>
<td>2.5 -4.7</td>
<td>Jordon</td>
<td>[50]</td>
</tr>
<tr>
<td>Tap water</td>
<td>0.082±0.7</td>
<td>Iran /Bandar abbas</td>
<td>This study</td>
</tr>
</tbody>
</table>

The values of $^{222}\text{Rn}$ concentrations in tap are lower than standard limit of EPA and WHO guideline. Our data may be the reflection of both long aeration process undergone by the water in the process of treatment due to aeration of radon gas to the atmosphere, and lack of major contact with radon emanating mineral material retention time in the network distribution water.

The differences in geological structure, sensitivity measurement devices and temperature of water before measurement [51, 52], influence emanation of $^{222}\text{Rn}$ from water, increase of temperature of water induce decreases emanation of $^{222}\text{Rn}$ from water [52] and Igneous and sedimentary geological structure increase $^{222}\text{Rn}$ dissolved in water[51].
The results of the $^{222}$Rn concentrations in wells, ground water and tap water of the studied area were compared with those reported by other authors in different countries of the world. The mean value of $^{222}$Rn concentration in tap water was lower compared to the values reported in Brazil, China (Groundwater), Turkay, China (Beijing), Romania (North-West), China (tap water), Jordon, Venezuela, Turkey (Konya), Italy, Iran (Mashhad), Iran (Neyshabour), Iran (Tehran), Iran (Ramsar) and Iran (Minab), and was higher compared to the values reported in Iran (Jask) and Palestine/Gaza (Table 3).

The order of the $^{222}$Rn effective doses ingested in different age groups was adult males > adult females > infants > children, respectively. Per capita drinking water consumption in the children’s age group is greater than infants and despite of more conversion coefficient, the effective dose in this group (children) is higher. Due to more water consumption in the adults group age (adult males 2.723 l/d and, adult females 2.129 l/d), the effective dose is higher than the infants and children group age. The effective doses of all age groups under this study are less than the standard limit set by WHO ($p$ value < 0.001) [20]. Even at the maximum $^{222}$Rn concentration (0.384 Bq/l), the effective dose is also much less than 0.1 mSv/y.

The mean of effective dose for the age groups of adults and children in Somlai et al. study is 20.3 µSv/y (1.13-88.7 µSv/y) and 40.6 µSv/y (2.26-177 µSv/y) µSv/y, respectively. The effective dose in Somlai et al. study was much higher than our study because of more $^{222}$Rn concentration in the tap water [21]. The effective dose due to drinking the tap drinking water in Binesh et al. study in Mashhad city was also higher than in our study because of more $^{222}$Rn concentration (0.04 mSv/y) [53].

In the study of Ahmad et al., mean of concentration of $^{222}$Rn is 5.37 Bq/l and effective doses due to the ingestion of radon in drinking water varied from 0.014 ± 0.0016 to 0.0899 ± 0.0088 mSv/y, 0.0052 ± 0.0006 to 0.033 ± 0.0032 mSv/y and 0.0068 ± 0.0007 to 0.0434 ± 0.0042 mSv/y, for age groups < 2 years, 2-16 years and > 16 years, respectively [4]. Ratio minimum effective doses in the study of Ahmad et al. for infants, children’s and adults males are 2.79, 7.4 and 14, respectively. In the same study $^{222}$Rn concentration in the tap water was 65 times higher respect to our data. In both studies the conversion coefficient is almost the same, daily water intake and sensitivity coefficient are necessary to calculate the effective dose, therefore, $^{222}$Rn concentration is the effective factor for this differences.

5. Conclusions

The results of this research shows that $^{222}$Rn concentration in the tap water of Bandar Abbas city is lower than WHO, EU and EPA standard limits. Also the effective dose of $^{222}$Rn in the all age groups is much lower than standard limits.
Given the daily high consumption of water, adults males are highest sensitivity to health hazards of $^{222}$Rn, in particular for both stomach and lung cancer. Therefore, we recommend to remove the $^{222}$Rn excess from the drinking water using a proper treatment to reducing the $^{222}$Rn health hazards for the adults males.

6. Acknowledgements

Students Research office of Shahid Beheshti University of Medical Sciences (Code:8156, Date:2016/02/29) and Social Determinants in Health Promotion Research Center of Hormozgan University of Medical Sciences were supports the financial of this research (Code:93104, Date: 2014/11/24).

7. References


24. Fakhri, Y., et al., Determination concentration of Radon222 in Tap drinking water; Bandar Abbas City, Iran.


**Corresponding Author:**

**Hassan Keramati**

**Email:** Hkramatee@gmail.com